

Nitrogen Bases Thymine Adenine Cytosine Guanine **Bases pairs** Sugar Phosphate backbone

Over 50% of mutations in Colorectal Cancer were C:G to T:A transitions

And 10% were C:G to G:C transitions

In Breast Cancers, only 35% of the mutations were C:G to T:A transitions

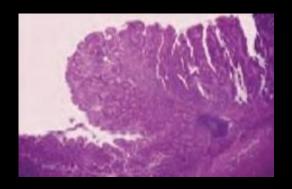
And 29% were C:G to G:C transitions

Normal epithelium

Dysplastic

Early adenoma

Intermediate adenoma


Late adenoma

Carcinoma

Metastases

Normal epithelium

Adenoma

Carcinoma

Etiology of Cancer

Tobacco

Oncogenic Viruses

Inflammation

Chemical Agents

Physical Factors

Etiology of Cancer(Tobacco)

Level of Evidence for Smoking	Cancer Site	
Evidence Sufficient to Infer Causal Relationship	Bladder, Cervix, Colorectal, Esophagus, Kidney, Larynx, Leukemia (AML), Liver, Lung, Oral cavity, pharynx, Pancreas and Stomach.	
Evidence Suggestive but Not Sufficient to Infer Causal Relationship	Breast	
Inadequate to Infer Presence or Absence of Causal Relationship	Ovary	
Evidence Sufficient to Infer No Causal Relationship	Prostate	

Yearly Smoking Attributable Mortality

Etiology of Cancer(Tobacco)

A common index of cancer risk is pack-years

Or the number of packs of cigarettes smoked per day multiplied by the number of years smoked in the lifetime

Etiology of Cancer(Tobacco)

The pathway by which tobacco use leads to cancer

- Carcinogen exposure leads to the formation of carcinogen— DNA adducts, then cause mutations, if not repaired or removed by apoptosis, will eventually give rise to cancer
- Smoker tissues contain higher levels of DNA adducts than nonsmokers, and that DNA adduct levels are associated with cancer risk

Etiology of Cancer (Oncogenic Viruses)

Viruses can cause cancer through either (or both) of two broad mechanisms

1- Direct

2- Indirect

Direct: Inactivate of tumor suppressor proteins mechanisms, in which the virus-infected cell ultimately becomes malignant, then cancerous cell remains "addicted" to viral oncogene expression for ongoing growth and viability.

Etiology of Cancer(Oncogenic Viruses)

Viruses can cause cancer through either (or both) of two broad mechanisms

Indirect: The cells have never been infected by the virus.

Instead, the viral infection lead to cancer by attracting inflammatory immune responses that, lead to accelerated cycles of tissue damage and regeneration of non-infected cells.

- In some instances, virally infected cells may secrete paracrine signals that drive the proliferation of un-infected cells

Etiology of Cancer (Oncogenic Viruses)

A variety of viruses can cause cancer

Human papillomavirus (types HPV16 & HPV18)

Cervix
Penis
Anus
Vagina
Vulva
Tonsils
Base of tongue

Hepatitis B virus (HBV) — Hepatocytes Cirrhosis, Hepatocellular Carcinoma

Hepatitis C virus (HCV)

Hepatocytes Cirrhosis Hepatocellular carcinoma Splenic marginal zone lymphoma

Etiology of Cancer (Oncogenic Viruses)

A variety of viruses can cause cancer

Epstein-Barr virus (EBV, HHV-4)

Pharyngeal mucosa Mononucleosis
Burkitt lymphoma
Other Non- Hodgkin Lymphoma
Nasopharyngeal carcinoma

Kaposi's sarcoma herpesvirus (KSHV, HHV-8

Kaposi's sarcoma (KS),

Multicentric Castleman Disease (MCD)

Merkel cell polyomavirus (MCPyV, MCV) ———— Merkel cell carcinoma (MCC)

Etiology of Cancer(Oncogenic Viruses)

Kaposi's sarcoma (KS)

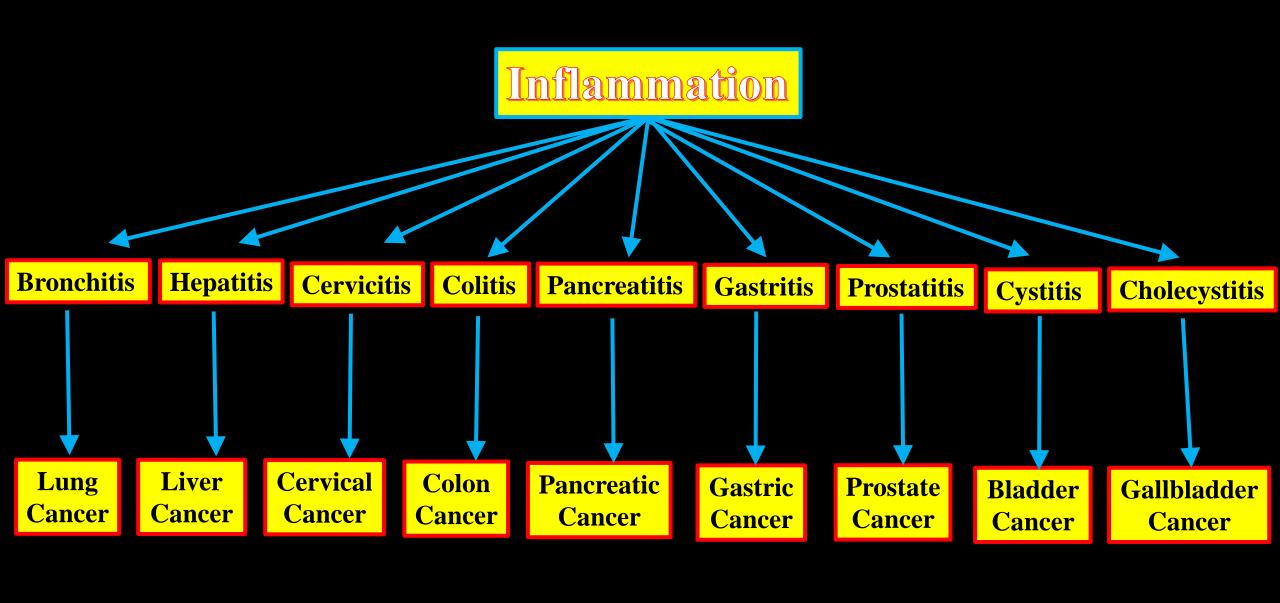
Etiology of Cancer (Oncogenic Viruses) Merkel cell carcinoma (MCC)

Etiology of Cancer(Oncogenic Viruses)

Vaccine

- Vaccine or anti viral agent targeting the virus demonstrate either prevents or treats human cancer
- This type of proof has fully validated the causal role of HBV in human liver cancer
- Also show that anti herpes virus therapeutics can prevent KSHVor EBV-associated lymphoproliferative disorders
- Vaccination against HPV can prevent the development of precancerous lesions on the uterine cervix.

Etiology of Cancer(Oncogenic Viruses)


Summary

Oncogenic viruses are important causes of cancer, especially in less industrialized countries and in immunosuppressed individuals.

Vaccines and antiviral agents play an important role in the prevention of virus-induced cancers

Etiology of Cancer (Inflammation)

- Inflammation is closely linked to cancer, and the incidence of most cancers can be reduced by controlling inflammation.
- Pro-inflammatory conditions such as colitis, bronchitis, hepatitis, and gastritis can all eventually lead to cancer.
- Thus, one must find ways to treat these conditions before the appearance of cancer.
- All studies indicate that an anti inflammatory could play an important role in prevention of cancer.

Etiology of Cancer

(Chemical Agents)

Target Organ	Agents	Industries	Tumor type
Lung	Tobacco Smoke Arsenic Asbestos Chromium Coal Nickel Compounds Soot Mustard gas	Aluminum production Coal gasification Coke production Painting	Squamous Cell Carcinoma Large Cell Carcinoma Small Cell Cancer Adenocarcinoma
Pleura	Asbestos Painting	Insulation Mining	Mesothelioma
Oral Cavity	Tobacco smoke Alcoholic beverages Nickel	_	Squamous cell cancer

Etiology of Cancer (Chemical Agents)

Target Organ	Agents	Industries	Tumor type	
Esophagus	Tobacco Smoke, Alcoholic Beverages	_	Squamous cell cancer	
Gastric	Tobacco Smoking	Rubber industry	Adenocarcinoma	
Colon	Alcohol, Tobacco Smoking	_	Adenocarcinoma	
Liver	Aflatoxin Vinyl Chloride Tobacco Smoke, Alcoholic Beverages	_	Hepatocellular carcinoma Hemangiosarcoma	
Kidney	Tobacco Smoke Trichloroethylene	_	Renal cell cancer	

Etiology of Cancer

(Chemical Agents)

Target Organ	Agents	Industries	Tumor type
Bladder	Tobacco Smoke, Benzidine Phenacetin, Cyclophosphamide	Painting Rubber Production	Transitional Cell Ca. (TCC)
Prostate	Cadmium	_	Adenocarcinoma
Skin	Arsenic, Coal Mineral oils Soot Cyclosporin, Azathioprine	_	Squamous Cell Ca. (SCC) Basal Cell Ca. (BCC)
Bone marrow	Benzene Tobacco Smoke Ethylene Oxide Cyclosporin, Formaldehyde	Rubber workers	Leukemia Lymphoma

Etiology of Cancer (Physical Factors)

Ionizing Radiation (IR) and Ultraviolet (UV)

Induce DNA damage and subsequent mutations, leads to Cancer

Mobile phone

In contrast, there is not correlation between mobile phone usage and incidences of glioma, meningioma, or non-central nervous system (CNS) cancers.

Electromagnetic fields

A low frequency EMF does not transmit energy high enough to break chemical bonds; therefore, it is not thought to directly damage DNA or proteins in cells

Etiology of Cancer (Physical Factors)

Asbestos

Asbestos becomes a serious health hazard if the fibers are inhaled over a long period of time and these health effects are increased dramatically if the exposed individual is a smoker

It was first reported in 1935 that asbestos might be an occupational health hazard that could induce cancer

Asbestos-induced DNA damage has been shown to result in chromosome aberrations, micronuclei formation, and increased rates of sister chromatid exchanges

Asbestos can induce Lung Cancer and Mesothelioma

Etiology of Cancer (Physical Factors)

Nanoparticles

- The production of nanoparticles are found in many industrial and consumer products such as Paint, Cosmetics, and Sunscreens
- They also have many potential medical applications, such as delivery vehicles for specific drugs to specific target tissues or tumors.
- Many of the cellular effects of nanoparticles are similar to the effects exerted by asbestos, such as inflammation.
- Nanoparticles have been shown to induce oxidative DNA damage,

